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A projection method is described for constructing motions in Lagrangian mechanics. A Galerkin scheme is constructed for the 
trajectory in configuration space, using Hamilton's variational principle. The class of admissible paths for which the principle is 
considered consists of motions with fixed initial and terminal positions. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

Suppose we are given a holonomic mechanical system with n degrees of freedom. The configuration 
manifold is a domain D C R n. The motion of the system is considered over a finite timer interval 
[to, td C IL The kinetic energy T(t, q, (1) is a sufficiently smooth function of  its arguments, defined on 
a set A = [to, tl] x D x R n. In addition, in the general case it is assumed that 

T(t,q, ~l)= T2(t,q, ~l)+Tl(t,q, ~l)+To(t,q) (1.1) 

T2( t ,q '  t i ) = l ( a ( t , q ) t l ,  ¢1), T l ( t ,q ,  l i ) = ( b ( t , q ) , t i )  

where (., .) is the Euclidean scalar product in R n and a(t, q) is the symmetric kinetic energy matrix, which 
is positive-definite throughout [to, tl] ×D. It is assumed that this property ofa(t,  q) also holds in a certain 
neighbourhood of [to, h] x D. 

We also assume defined on A a vector-valued function of generalized forces Q: A ---> R n, which is 
sufficiently smooth with respect to q and ti for almost all t e [to, tl], and square integrable with respect 
to t. All this can be ,iummed up in a single condition 

Qe/-,2([t0,tl], CU(DxRn,R~)) 

It is additionally ~Lssumed that Q depends on the velocities to at most the second degree; this takes 
in a good many appli~eations. The coefficients of the terms of the second degree in ti must be sufficiently 
smooth functions ot' t. The terms of the first degree in ti may have coefficients of which we demand 
only square integrability with respect to t. 

The variational problem is formulated in the standard way- among all sufficiently smooth paths q: 
[to, h] ---> D in the configuration space that satisfy the boundary conditions 

q(to) = qo, q(tl) = ql 

it is required to find one that satisfies the second-order Lagrange differential equation 

(T~i) -Tq =Q (1.2) 

or what is the same, the variational equation 

tl 
I ((T/t, &~l) + (Tq, &l) + (Q, ~)q))dt = 0 
to 

(1.3) 
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for arbitrary sufficiently smooth functions &l satisfying the boundary conditions 

~ q ( t o )  = ~Sq(tl)  = 0 

Throughout, we shall assume that this problem indeed has a solution, and that the solution is unique. 
We wish to design a uniform approximation procedure for the solution over the interval [to, tl] in the 
configuration space. In velocity space we confine ourselves to mean-square approximation. In what 
follows it will be more convenient to work with Eq. (1.3), after a preliminary transformation using 
integration by parts 

t] (Tq(t'q(t)'¢t(t))- i (Tq (x'q(t)'il(x))+Q(t'q(t)'q(t)))d'c'~)il)dt=O 
tO t 0 

(1.4) 

2. FUNCTIONAL MODEL 

We will use a construction similar to that used in [1, 2], but with several substantial correctives. We 
first define the Hilbert space in which Eq. (1.4) will be modelled. This will be the space of paths 
z: [to, tz] ~ R ~ satisfied by the conditions 

Z(to) = z(h) = 0 (2.1) 

Given points q0 and ql in the domain D, let us connect them in some way by a piecewise-smooth 
path q0: [to, h] --¢ D. If the structure of the set D permits, this may be, for example, a segment of a 
straiglat line or a vector-valued function with suitable analytical properties. In the general case the 
path q°(t) may be a polygonal line connecting the points q0, ql E D. Yet another construction of q0, in 
perturbation problems, involves using trajectories of the unperturbed motion. 

We now change to new generalized coordinates q ~ z, by the formula 

q = q°(t) + z (2.2) 

When this is done the Lagrange equations (1.2) and Hamilton's principle (1.3) retain their previous 
forms. The kinetic energy and generalized forces, however, are modified by the substitution (2.2). A 
solution of the variational problem 

t I t 

J ( (Ti( t , z ( t ) , z ( t ) ) -~ (Tz(x,z(t),~-(x))+Q(t,z(x),i(x)))dx, S i )d t=O 
10 I|1 

(2.3) 

must now be sought among the functions z(t) that satisfy (2.1). Note that, after applying (2.2), the 
representation of the kinetic energy in the form (1.1) is changed. Nevertheless, we will retain the previous 
notation for the functions a(t, z), b(t, z), To(t, z). This is all the more natural in view of the fact that the 
matrix a(t, z) will have the same values as before at points corresponding by (2.2). 

The Hilbert space ~1 of paths z(t) satisfying condition (2.1) is defined by the scalar product 

(zl,z2) ° (~.l(t), 72(t))dt (2.4) 
tO 

This equality defines a metric in the space 

!~I I = l~It ([ to , h ], R n) 

of functions with square-integrable derivatives that satisfy boundary conditions (2.1). We know that the 
norm in/~1, which is defined, according to (2.4), by 

(2.5) 
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is equivalent to the norm 

I ,! 
Ilzllt = r;,'I IIz(t) 112 dr+ t~,llli(t)ll2 dt) ~ (2.6) 

of  the Sobolev space H 1 = Hl([t~ tl], R~), if/_~1 is treated as a subspace of  H 1. This means that the 
use of  the boundary conditions (2.1) enables us to pass from the norm (2.6) to the equivalent norm 
(2.5). In particular, one can speak of H 1 as embedded in the space of absolutely continuous functions 
in [t~ fi] with values in R ~. Hence it follows that a small distance in the norm (2.5) guarantees a uniformly 
small distance in the interval [to, tl]. 

We shall not need all elements of the space/~1, but only those for which the path q°(t) + z(t) belongs 
to D for all t ~ [to, fi]. It can then be shown, as in [1, 2], that the set 

= { z ~  ~l:qO(t  ) + z ( t ) ¢  D V t ~  [t0, q]} 

is a domain in/.~1. 
We now consider the left-hand side of  Eq. (2.3). It defines a linear form in the tangent space Tz~ = 

~1.  For 5z ~ ~1  we denote this form by Iz(SZ). It turns out that when z ~ f~ the linear functional 
Lz: Tz~ ---> R is continuous. 

To prove this, it will suffice to show that an element X(z) ~/~z  exists such that the functional L,  may 
be expressed as a scalar product in/~z 

Lz(SZ) = (X(z), 8z) ° (2.7) 

which automatically implies the continuity of  Lz. 
Let us put 

t 
(l(z))(t) = Tz (t, z(t), ~(t)) - ~ (T z (~, z(f), ~(~)) + Q(~, z(f), 7.(x)))dx (2.8) 

ru 

also introducing the following linear operators: averaging, A: L2 ~ L2; centring about the mean, C: 
L2 ~ L2; and primitive, B: L2 ~ H I, where L2 = L2([to, q], It"), as follows: 

t I t 

(Ax)(t) = (t, - t0) -i ~ x(x)dx, (Bx)(t) = ~ x(~)d~, Cx = x- Ax 
t(} t 0 

° 1 Then it is obvious that for anyx ¢L2 we have BOx ¢ H ,  i.e. (BCx)(t0) = (BCx)(tl) = 0. 
On the other hand, the variational problem (2.3) may be replaced by the equivalent problem 

't ((Cl(z))(t), Si(t))dt = 0 (2.9) 
I0 

Indeed, the integral (2.9) differs from (2.3) by the amount 

't ((Ai(z))(t), 8i(t))dt = ((Al(z))(t),*z(t)) I ' -  t l ((Al(z)) (t), 8zO))dt = 0 
10 tO '0 

since conditions (2.1) are satisfied and the mean value is independent of t ~ [to, tz]: (Al(z))(t) - const. 

Since (Bx) (t) ---- x(t), the function 

(X(z))(t) = (BCl(z))(t) (2.10) 

satisfies Eq. (2.7) if l(z) ~ L 2. 

Indeed, Ti depends linearly on~ with sufficiently regular coefficients and a linear function as free term. Therefore 
Ti ~ L2 C L1, where LI = Lx([t0, tl], Rn)- 

The degree of Tiwith respect to~ is at most two. The terms of degree zero in Tz are sufficiently regular. Therefore 
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T0z is integrable with respect to t. Those terms that are linear in ~ also yield a function that is integrable with respect 
to t (as does Ti). The quadratic terms have the form Tzl = (azi, i)/2 and may have the upper limit 

II(az~.,i ) /21leg const I1~.112 

Since i • L2, it follows that {a~i, i)/2 • L1. Finally, we can state that Tz • L v  
By our assumption, the vector-valued function Q also depends on ~ to degree of at most two, and the coefficients 

in the quadratic terms must be regular. In that case Q will consist of terms involving the derivative of a regular 
function and at most two functions in L2. Therefore Q • L1. 

Thus, we have proved that Tz + Q • L1. Therefore B(Tz + Q) • CA C L2. 
Now, recalling Riesz' representation theorem for continuous linear functionals in Hilbert space [3], according 

to which the element X(z) in the scalar product in (2.7) is uniquely defined, we conclude that formula (2.10) uniquely 
defines an operator X: L) --+/_/'1. 

The v a~,~ational equation of Hamilton's principle (2.9) has now been reduced to a functional equation 
in D C H ,  of the form 

X(z)=O (2.11) 

In what follows we shall use a different representation of this equation 

z = Z(z) (2.12) 

To transform (2.11) to this form, let us consider the structure of the operator X in more detail. It follows 
from (2.8) that 

(l(z)) ( t )  = a ( t ,  z(t)) ~(t) + (k(z)) (t) 

(k(z))(t) = b(t, z(t))-  i (Tz(x, z(x), f~(x)) + Q(x, z(x), z(x)))dx 
to 

Hence we conclude, integrating the first term by parts and applying the operator B, that 

(BCl(z))(t) = (Bl(z))(t) - (BAl(z))(t) = a ( t ,  z(t))z(t) + (Y(z))(t) 

t 

(Y(z))(t) = - ~ ¢i('L z(~'), z('c))z('t)d~ + Bk(z))(t) - 
t0 

- (t - to) (Al(z))(t), iz(t, z,~.) = a,(t, z) + az(t, z)~ 

(2.13) 

where the evaluation of Bl(z) also involves integration by parts. We now define the operator Z: 
[~ _>/~1 in Eq. (2.12) by 

(Z(z))(t) = -a  -t (t. z(t))(Y(z))(t) (2.14) 

In the formalism proposed in [1, 2], one can construct in ~ a  a system of subspaces Em C /_~1 
(m = 1, 2 , . . . ) ,  exhausting the space, with the help of an orthonormal basis {ejT~k} (j = 1, 2 . . . . .  n; 
k = 1, 2 , . . . ) ,  where the vectors {ej}~l form an orthonormal basis in R a and the system {~}~--1 a basis 
in the space of scalar functions that vanish at the endpoints of the interval [to, tl]. As the functions 

one can take, e.g. the system 

gk (t) = (2 / (t I - t o))~ (rtk) -I sin(kx(t I - t o)-I (t - t o)) (2.15) 

(k = 1, 2 , . . . ) .  
To construct a Galerkin scheme, we define projection operators whose ranges are the finite- 

dimensional subspaces Pm:/~1 ~ E,n, as projections which are orthogonal in the metric of H 1. 
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3. D I F F E R E N T I A B I L I T Y  

The approximation theorem for solutions of Eq. (2.12) requires the operator Z: t~ -~/_~1 to have 
certain properties. ]In particular, Z should be fairly regular. Namely, it can be proved that the operator 
Z: t2 ~ H 1 is continuously Fr6~het-differentiable. 

Indeed, let us u ~  the structure (2.14) of the operator. It is clear from (2.13) that the operator 

y: f~ ~ / ~ 1  can be defined by 

Y(z) = BC(k(z) - ~x(z)), or(z) =/~(t, z(t), It(t))z(t) 

We have used the fact that A((az)') = O. 
However, in order to verify that Z is smooth, it is not enough to verify this for Y. One must also take 

into consideration that the vector-valued function CY(z))(t) must be premultiplied by the matrix 
-a-l(t, z(t)). This multiplication defines a linear operator in/~1. Since by assumption a(t, z) is a 
positive-definite s3nnmetric matrix and a sufficiently regular function of its arguments, the same is true 
of the matrix a-l(t, z). 

Let h • ~1. Denote the operator defined by the formula 

h(t) ---* a(t, z(t))h(t) (3.1) 

by r(z). Clearly, for z • ~1, the action of F(z) does not take us out o f H  1, i.e. r(z): ~1 ~ ~1. It is easy 
to show that F(z) is an element of the algebra L(H 1, ~1) of continuous linear operators in ~1. 

Now, if z • t~, the matrix a-l(t, z(t)) has the same properties as a(t, z(t)) and is moreover its inverse. 
Hence, the operator, F(z), has an inverse r-l(z): H 1 ~ H 1, and the latter is bounded and linear: 

1 "1 "1 r -  (,) • L ( H ,  H ). 
Thus, if z • t~, the operator F(z) is continuously invertible in ~1. Denote its action on an element 

"1 h • H by the composition symbol (F(z)h). Then the operator Z(z) may be defined as the composition 
of - r - l (z )  and Y(z), i.e. Z(z) = (-r- l (z)  ° Y(z)). 

It is well known 114] that a bilinear mapping 
o o (.o.):L(H I, H I ) x ~ l  ~ H I 

is continuous and of norm 1. It is also well known [4] that a continuous bilinear mapping is continuously 
differential with re.~;pect to both its arguments. Moreover, ff ul(z) and n2(z) are continuously differen- 
tiable as functions tq: t~ ~ L(H 1, ~1), Ue: f~ --* ~1, then the same is true of the function (Ul(Z) • Ue(Z)), 
and Le~niz's differentiation formula will hold [4]. 

*1 The problem has been reduced to proving that the mapping F: t~ --# L (H1,/~1 ), y: f~ ~ H is continu- 
ously differentiable. The proof for r -1 is the same as for F. 

Since the elements of the range of F are bounded linear operators, the elements of the range of the 
Fr6ehet derivative 17' (if it exists) .are continuous bilinear forms. 

Noting that the operator F(z): H 1 ~ H 1 was defined by formula (3.1), one can prove that its derivative 
is defined by the formula 

((r'(z)h)hL)(t) = (at(t, z(0)h( t ) )h l ( t )  (h,  h I • /~ l )  (3.2) 

where az(t, z(t))h(t) is a linear operator in R n which depends linearly on the components of the function 
h e / ~ 1 .  Since the kinetic energy matrix is sufficiently smooth, the same will hold for the matrix of the 
tensor of its partial derivatives. It is therefore easy to verify that formula (3.2) defines a continuous 
bilinear form 

r ' ( z )  e , 

To prove Fr~chet differentiability, one estimates the difference re(h)/11 h [[0 = (F(z + h) - F(z) - IV(z)h)/11 h I[ ° 
and proves that co(h)/][ h U ° -~ 0 as II h U ° -* 0. Having shown that the function U: f~ ---> L(H 11,/~1) 
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is differentiable, one can prove that the derivative r ' :  n L(hl, L (/-~1, h 1)) is continuous, again using 

the smoothness of a(t, z). 
We will now analyse the operator Y: f~ --> ~1. It is the composition of three operators, defined by a 

commutative diagram 

where the operator F: f~ ~ L 2 is defined by F(z). = k~(z) - a,(z). 
It is obvious that the linear operator B: L 2 --~ H 1 is bounded, and it is even isometric in the subspace 

of L 2 of functions with zero mean. Hence B is continuously differentiable on C(L2). The operator 
C: L2 --~ L2 is also linear and bounded, since it has the form C = I - A, where the averaging operator 
A is bounded. Finally, we see that the linear operator BC: L 2 --~/_~1 is hounded and, therefore, 
continuously differentiable. 

The proof that the operator F: f~ --~ L 2 is differentiable uses standard methods. F may be evaluated 
by the formula 

(F(z)) (t) = bft, z(t)) - a,(t, z(t)) z(t) - (az(t, z(t)) ~.(t)) z(t) - 
t 

- ~ (Tz(x, z (x) , / t (x) )  + Q(x ,  z(%), ~(x)))  dx 
to 

One then proves that the Frrchet derivative F'(z) may be written as 

(F'(z)h)(t) = b. (t, z(t))h(t) - (a n (t, z(t))h(t))z(t) - a t (t, z(t))h(t) - 

((a,.(t ,z(t))h(t))~.(t))z(t)- (a~(t ,z(t))h(t))z(t)-  (a,(t, z ( t ) )z( t ) )h( t ) -  
t 

- ~ (S,(x, z(%),i(x))h(%) +S,  (%, z(%), z(x))h(x))d% 
tt) 

(3.3) 

We recall that the function S(t, z, ~.) = Tz(t, z, ~.) + Q(t, z, i )  is of at most the second order in the 
generalized velocities; moreover, the coefficients of the second-order terms are assumed to be regular 
with respect to t and z, non-regularity with respect to t being admissible only in the coefficients of the 
terms linear in ~. 

In the proof that F'(z) ~ L ( H  1, L2), each term in F'(z) is considered separately. It can in fact be verified 
1 that the operator le(z): H ---> L2 is bounded. 

The fact that this operator is the Frrchet derivative of F: f/---) L2 may be verified by estimating the 
norm of the distance co(h) = F(z + h) - F(z) - F'(z)h in L2. 

To verify the continuity of F'  with respect to zl, z2 ~ ~ ,  suppose that II zl - z2 II ° -~ 0 and consider 
the operator norm 

IIF'(zj ) -  F'(z 2)11= sup II(F'(z I ) -  F'(z 2))hll 2 
Ilhtl~)=l 

Using formula (3.3), one can verify the continuity of each term in this norm. 

4. C O N T I N U O U S  I N V E R T I B I L I T Y  
°1 o Having convinced ourselves that the operator Z: f/---) H ,  and hence also the operator I - Z: f2 1 

H ,  are continuously differentiable everywhere in ~,  we consider the question of whether the derivative 

I - Z ' ( z ) : / ~ 1  ._) /~1 (4 .1)  
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is continuously inve~rtible in the tangent space to f l  at Z. It will suffice to verify invertibility at a solution 
of Eq. (2.12). Denote this solution by y • fL 

In Section 3 we derived an expression for the derivative of the operator Z. The complete expression 
may be written as 

Z ' ( z ) h  = - ( (F  -I )'(z)h o Y(z)) - (F "l (z) o Y'(z)h) 

To prove that the operator (4.1) is invertible, we must solve the equation 

(I  - Z ' ( z ) ) h  = g 

for the function h • /~1 ,  where g • ~1 is arbitrary. Let us write out this equation in expanded form for 
z m y  

h + (( F -~ )'(y)h o Y(y)) + (F -~ (y) o Y'(y)h) = g (4.2) 

The Lagrange equations of the second kind for the vector-valued configuration function z(t) may be 
written in the following general form 

= fit ,  z, z) (4.3) 

where f(t, z, ~.) = f2(t, z, z) + fl(t, z, ~.) + f0(t, z, ~.), the !~ being homogeneous forms of  degree i in the 
velocities (i = 0, 1, 2). If we assume that z • H 1, then i • L2. It is evident from the analysis in Section 
2 of the kinetic energy function T(t, z, z) and the function of generalized forces Q(t, z, z) that substitution 
of z • /~11 into the right-hand side of (4.3) yields a function f(-, z, ~.) • L1. System (4.3) satisfies the 
well-known Cara th~dory  conditions [5] for equations with not necessarily continuous right-hand sides. 
Therefore, the Cauchy problem for (4.3) has a solution, which is moreover unique. 

Let  y(t) be a sohltion of the boundary-value problem (2.1) for (4.3). Since y • L1, it follows that 
• CA. Consequently, the limit tim :(t)  = Y(t0) as t ~ to exists and y(t) is the solution of the Cauchy 

problem for (4.3) with initial data 

z ( t o )  = o ,  ~-(to) = y o  

Introducing the notation 
a ( t , y ( t ) )  = a I (t), ( a z ( t , y ( t ) ) h ( t ) ) y ( t )  = a2 ( t )h ( t )  

S z ( t , y ( t ) , y ( t ) )  = a4(t), S i , ( t , y ( t ) , y ( t ) )  = a3(t ) 

in order to simplify what follows, and noting that y(t) satisfies Eq. (2.12), while the right-hand side of the 
equation has the foma (2.14), we obtain, after multiplying (4.2) by ai(t ) and differentiating with respect to t 

(A (h))(t) - b I (h) = (a t (t)g(t)) 

t 

( A (h))(t) = a I (t)it(t) + a 2 (t)h(t) - ~ (a 3 (z)lt(x) + a 4 (x)h(~))d~ 
Ill 

bt ( h )  - const - (AF'(y)h)(t) 

(4.4) 

For given g • ~1, FAn. (4.4) is linear inhomogeneous in h •/~1. It can be shown that if Eq. (4.4) has 
a solution, that solution is unique. 

Let hi, h2 E / ~ 1  be solutions of Eq. (4.4) for a given g. Their difference Ah = hi - h2 will satisfy the corresponding 
homogeneous equation. It is legitimate to differentiate this equation with respect to t, because only a2(t) contains 
y(t), which is an element of CA, and therefore fi2(t) E L1; but this is quite sufficient for the Carath6odory conditions 
to hold. Differentiati~Lg, we obtain a system of equations in variations for the original Lagrangian system 

( a I h + a2h)' - a3h - a4h = 0 (4.5) 

We know that this system has a resolvent R(t, to), and so the general solution of system (4.5) may be written in the 
form 
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If we assume that h E gl, then ha = h(rs) = 0. Therefore 

h(r) = B(r, ro)ho (4.7) 

where B(t, to) is the upper right block in the matrix R(r, to). 
Under our assumptions (as is obvious from E!q..(4.5)), the solution satisfies the condition h E Lr, whence it follows 

that h is continuous, so that the limit lim h.(t) = h,-, exists as t + to. Therefore Eq. (4.7) is meaningful. In particular, 
we putt = tl. We obtain an equation for ho 

B(r, .r,)h, = h(t,) = o (43) 

We now introduce another essential assumption 

det B(r ,, to) + 0 

This means that in the mapping along a trajectory the upper right minor of the determinant 

(4.9) 

does not vanish. 
Note that B(rc, to) = 0. If we use a Legendre transformation to change to canonical momenta: i + p, then condition 

(4.9) will be equivalent to 

A canonical transformation with this property is said to be free. However, it is well known that not every canonical 
transformation is free. For example, no point transformation is free. However, an oscillatory motion described by 
a Hamiltonian system generates a free canonical transformation. This may be verified for the example of normal 
coordinates for small oscillations of a conservative system about an equilibrium position. The equations in variations 
then define rotations in the (coordinate, velocity) plane, which generate a free canonical transformation. We may 
therefore state that this condition is fairly typical in applications. 

By (4.9), the system of equations (4.8) has a unique solution ho = 0. Therefore, the unique solution 
of system (4.6) satisfying the boundary conditions (2.1) (or h E I-?) is h(t) = 0, whence it follows 

that Ah(t) = 0, or h&) = h&). This means that Eq. (4.) always has a unique solution. 
As a trial solution of Bq. (4.4), let us take 

(4.10) 

whereA(t, T) is the upper left block of the matrixR(f, to). As will soon be clear, the function (4.10) is 
a solution of an equation of the form 

h(t) = j CC, (T)h(t) + C, (r)b)W + G(g))(r) + b(g) (4.11) 

fll 

Here 

c, (t) = a;’ OM, 0) + (a;’ W)‘u*(t) - (a;’ (t)a,(t))’ 

~2~~~=u;'~t~a,~r~+~~-'-'(r~~'u,~t~-u;'(t)u2(r) 

(G(g))(t)=u;'(r)(u,(t)g(t)) - i (u;'(z)) (u,(qg(wh 

B(g) = B-’ (t, , fo)l(t, ) = Const 

(4.12) 

It is obvious from (rl.lO)fhat, since B(to, to) = 0, we have h(to) = 0. The last relation in (4.12) also shows 
that h(fl) = 0, i.e. h E H1. One can now deduce from the properties of the equation in variations that 
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differentiation of tk  t. (4.10) with respect to t gives 

f 

h(r) = D(t, r 0)b(g) + (G(g))(t) + ~ (G(t, x) + D(t, %)C 2 (x))(G(g))(x)dx (4.13) 
to 

where C(t, "c), D(t, x) are the lower blocks of the matrix R(t, to). 
It can be verified that, expanding (4.13), one obtains an identity., on the left of (4.11). As done for 

(4.4), one now verifies that Eq. (4.11) has a unique solution h ¢ H I. 
It turns out that this function h(t) is also a solution of Eq. (4.4). 

The proof is as follows: By construction, the quantity lh(h ) in Eq. (4.4), considered for h ¢ ~I, is the mean of 
the function (A(h))(i 0, since we have assumed that g ~ H', so that the mean of (alg)" is zero. 

We will now try to transform Eq. (4.11) to the form (4.4). We transform the constant vector as follows: 

t 

-b=-ai'l(t)b2 + ~ (a~'i(~))'b2dx (b 2 =at(t0)b) (4.14) 
to 

If we use the representation (4.12) of the functions C1(t) and C2(t) and suitably regroup the terms, Eq. (4.11) 
can always be expressed--after premultiplication by at(t), (since a1(t ), the positive-definite symmetric kinetic energy 
matrix, is always non,-singular when evaluated for the solution being approximated)---as a Fredhoim equation 

v(t) - (Kv)(t) = 0 (4.15) 

(Kv)(t)= j ~(t,'Ov('Od%, I¢{t.x)=' I(t)(a~)(%))" (%<t) 
,o (x ~> t) 

where the unknown function is 

v(t) -- (A(h))(t) - b 2 - (al(t)g(t))" (4.16) 

To permit further investigation, we require that the integral operator I - K: L2 --* L2 be invertible. This is an 
operator of Volterra type whose kernel is sufficiently regular everywhere off the straight line t = x. 

As we know, the sufficient condition for the operator I - K to be invertible is that the norm of K should be less 
than unity. Then the, inverse operator exists, is continuous and can be expanded in series: (I - K) -1 = I + K + 
K2+ . . . .  

If the kinetic energy matrix varies weakly along a solution, then the derivative (a-i 1 (t))" is sufficiently small and 
the invertibility condition will hold. In the simplest case one can consider the situation in which al(t) -- const. Then 
K ffi 0 and the invertibility of the identity operator is trivial. 

Thus, let I - K be invertible. Then the unique solution of Eq. (4.15) in L2 will be the function 
*1 v(t) -- 0, i.e. in [to, tl]. But this means that, for given g ~ H ,  with the function h ~ ~1 calculated from 

formula (4.10) and the vector b2 found by (4.14), Eq. (4.4) is satisfied. 
It remains to velrify that be = bl(h) = AF'(y)h. Indeed, by definition bl is the mean of (A(h))(t) over 

the interval [to, tl]. On the other hand, taking a given element g ~ ~1, we conclude that (al(t)g(t))" has 
zero mean. Therefore, as the same is true of v(t) - 0, the vector b2 will also be the mean of the same 
function A(h))(t), where h is the solution of Eq. (4.4) given by (4.10). Therefore be -~ by 

Thus, we have finally established that the operator (4.1) is invertible. We shall now prove, using formula 
(4.10), that the inverse operator is continuous. Since the norm in ~1 is the L2-norm for the derivative, 
it follows that in fact we need formula (4.11). Estimating the norm for each term in (I - Z'(y))-lg, we 
obtain the condition for continuity: II (I - Z'(y))-lg II ° ~< const II g II °. 

Lemma.  Suppose that the following non-degeneracy condition holds along the solution y(t) being 
approximated, at I = t 1 

~Sz 
08z0 (t,) ~ 0 (4.17) 

where (Sz0, 8z0) T - ,  (Sz(t), 5~.(t)) is the tangent mapping along the trajectory. Suppose also that a unique 
solution v ~ L2 of the following linear integral equation exists 

t 

v( t ) -  ~ a(t,y(t))(a -I ('t,y('r)))' v(x)dx = 0 (4.18) 
t | l  
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Then the Fr6chet derivative operator I - Z'(y): h I ~ h 1 at the solution y(t) is continuously invertible. 

5. A P P R O X I M A T I O N  C O N D I T I O N S  

We will show that the following approximation conditions hold at solutions of Eq. (2.12) 

Ily - PmYtl ° ---> 0, II P,.Z(Pmy ) - Z(y)ll ° --> 0, I P.,Z'(P,,,y) - Z'(y)ll---> 0 

a s m  ----> oo. 

These conditions are verified by a method analogous to that described in [1, 2]. The only difference 
lies in the technique used to prove that the operator.Z'(z): h 1 ~ ~.~1 is compact at a solution z = y. 

Let {hk}~=l be an infinite system of functions in H 1 which is uniformly bounded: II !~ II ° ~ c. It can 
be shown that in the uniform metric of the space C = C([t~ tl], R n) these functions are uniformly bounded 
and equicontinuous. By Arzela's theorem, one can extract a subsequence {hmk}~*= 1 which is convergent 
in the metric of  C. 

As shown in Section 3, the operator I - Z'(y): h ---> g is defined by Eq. (4.4) relating the functions 
h, g E H 1. Putting f = h - g e H 1, we obtain an integrodifferential equation for f 

f = h - (I - Z'(y))h = Z'(y)h (5.1) 

That the functions hk are equicontinuous has already been verified. An analogous proof establishes 
the same for the functions gt,. It suffices to consider the different types of  terms oecu.rring on the right 
of (5.1) and to verify that they are equicontinuous. Using (5.1), one can also verify that f(t) is continuous. 
Thus, by Arzela's theorem, the sequence of continuous functionsf(t) contains a convergent subsequence 

• 1 fmk(t). Hence one can conclude that the elements Z (y)hmk ~ H converge, since 

~Z (y)h., k o . '~ • =(7,,,, _< 

~< (tj - t o)~ suplffm~ (t) - l'#,, (t)ll 

• *1 *1 We have thus proved that the operator Z (z): H~ ---> H is compact. However, in this case, unlike that 
1 of [1, 2], y is not any point of the domain f~ C H but the solution of Eq. (2.12) being approximated. 

To sum up, we have proved the following theorem. 
Theorem. Suppose that the boundary-value problem for Eq. (1.3) is uniquely solvable in the interval 

[to, tl] and let q(t)  be the solution. Suppose that the kinetic energy function T(t, q, ¢i) and the 
function of  generalized forces Q(t, q, ¢i) satisfy the conditions formulated in Section 1. If q°(t) is a path 
in the configuration space connecting points q0 and ql in time tl - to, then Eq. (1.3) for the function 
q(t) is equivalent to Eq. (2.12) for a function z(t) = q(t)  - q°(t) satisfying condition (2.1). 

In addition, if the non-degeneracy condition (4.17) holds for the solution z(t) being approximated, 
and the integral equation (4.18) is uniquely solvable, then e > 0 and an integer N exist such that, for 
any m > N, the equation 

z,,, = p , , Z ( z , ,  ) (z,,, e f , , )  (5.2) 

has a unique solution Zm in the sphere l[ z '  - z II ° ~< e, the following estimate holds 

I Iz , . -z l l °~  < IIz-PmzlI°+Ilzn,-P, nzlI°--~O (m-->oo) 

and there are constants ol and 02 such that 

c;A,,, ~< Ilz m - P.,zll ° ~< c~A,,, (A., =11P.,Z(Pmy ) -  Z(y)ll ° ) 

Here, again, as in [1, 2], we have used the appropriate result from [6]. 
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6. DISCUSSION OF THE RESULTS 

In conclusion, we note that the theorem is applicable in numerous problems of dynamics. It is clear 
from the assumptions of the theorem that approximations may be constructed even for motions that 
involve impact interactions. In such cases, as is well known, the generalized velocities may experience 
discontinuities as functions of timema situation that is covered by the metric of mean-square 
approximation (in ~Ihe tangent space). 

We now conside:r the technology of computing motions that satisfy the boundary conditions in the 
configuration space. The main problem in making proper use of the equations of motion is to determine 
initial velocities such that the motion will surely reach the given terminal point. The "shooting" method 
is standard in such situations. The exact solution is determined by an iterative process in a tinite- 
dimensional space. Each step, however, requires the computation of an entire trajectory for t e [to, tl] 
in the conditions for extremality of Hamilton's principle. Here, however, Hamilton's principle is used 
to formulate the extremality conditions in such a way that Galerkin's method is applicable in a suitable 
functional path sp~Lce. 
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